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Abstract
We investigate the doping of a geometrically frustrated spin ladder with static holes by a
complementary approach using exact diagonalization and quantum dimers. Results for
thermodynamic properties, the singlet density of states, the hole-binding energy and the spin
correlations will be presented. For the undoped systems the ground state is non-degenerate, with
translationally invariant nearest-neighbor spin correlations. For the doped case, we find that
static holes polarize their vicinity through a localization of singlets, reducing the frustration.
This polarization induces short range repulsive forces between two holes and an oscillatory
behavior of the long range two-hole energy. For most quantities investigated, we find very good
agreement between the quantum dimer approach and the results from exact diagonalization.

1. Introduction

Geometric frustration is a key factor, leading to exotic phases in
quantum spin systems. Valence bond (VB) ordering, with and
without breaking of discrete lattice symmetries, is one possible
type of ground state symmetry. Examples are the spin-1/2 zig-
zag ladder [1], the checkerboard lattice [2, 3], the j1– j2– j3
model [4, 5], or the Shastry–Sutherland model [6]. Another
exotic phase is the spin liquid (SL) which displays no apparent
magnetic order but may break topological symmetries, which
presumably is the case for the two-dimensional (2D) spin-1/2
kagomé antiferromagnet (AFM) [7–9].

Static holes, i.e. nonmagnetic defects, are an important
probe of such quantum phases. In case of enhanced VB
correlations or VB order without broken lattice symmetries,
the situation is similar to spin-ladders and the 2D Heisenberg
AFM, where static holes generate spin-1/2 moments in their
vicinity [10–12]. The latter induce triplet excitations at low
energies. In a SL, e.g. in the kagomé AFM, a very different
scenario has been observed, in which singlet pairs accumulate
close to the holes, rather than spin-1/2 moments [13]. In
case of VB states with spontaneous breaking of the lattice
symmetry [14], and other valence bond ground states [15],
bound spin-1/2 moments also seem to be absent. Apart
from the properties of a single static hole, correlation effects
between two holes may shed light on the (de)confinement of
mobile carriers, studied by the t–J model [20] in frustrated

quantum magnets [16–19]—at least for kinetic energies small
compared to the exchange coupling, i.e., t � J . Along this
line, hole–hole interactions have been studied recently in the
kagomé AFM [13] and in quantum dimer models [21]. In both
cases, deconfinement of the static holes has been found. For
two recent μSR-studies of doped kagomé AFMs, see [22, 23].

Additional insight into the response of frustrated spin
models to static holes can be obtained from a reduced
description of the singlet sector in terms of short range
resonating valence bonds [24], so-called quantum dimers
(QDs) [25, 9]. Classical dimer models on bipartite lattices
allow for a height representation and tend to be confining,
with a linearly or logarithmically attractive ‘string potential’
between holes [26, 27]. Non-bipartite lattices lack a height
representation and allow for both, confining as well as
deconfining [28–32] phases. Similar behavior is likely for QD
models.

In this work we intend to shed further light on the role
of static holes in geometrically frustrated magnets by studying
the spin-1/2 AFM on a bow-tie ladder (BTL). The BTL is a
one-dimensional array of corner sharing triangles, as depicted
in figure 1, and may be viewed as the medial lattice of the two-
leg ladder [30]. The AFM Heisenberg model on the BTL with
nearest-neighbor exchange

H =
∑

〈lm〉
Sl · Sm (1)

0953-8984/08/415204+07$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/41/415204
mailto:martins@oakland.edu
mailto:w.brenig@tu-bs.de
http://stacks.iop.org/JPhysCM/20/415204


J. Phys.: Condens. Matter 20 (2008) 415204 G B Martins and W Brenig

Figure 1. 1D bow-tie lattice structure of corner sharing triangles.
Spin-1/2 moments reside on all vertices. Thick gray (black) bonds
correspond to one QD configuration. Combination of gray and black
QDs represent one transition graph. Circles at the center correspond
to two static holes.

has been investigated extensively by linear spin wave theory,
exact diagonalization (ED) and density matrix renormalization
group (DMRG) in [33]. This analysis has uncovered several
issues which remain open. In particular, ED on up to N =
30 sites suggests that the BTL is qualitatively similar to
the Kagomé AFM, i.e. the system is a SL with a spin gap
and a large number of singlets (∝N2) below the first triplet.
However, ED does not allow extrapolation of the triplet gap to
the thermodynamic limit. DMRG up to N = 120 indicates
a vanishing spin gap for N → ∞. Therefore, apart from a
SL state it remains possible that the BTL is critical or displays
VB order with a very large unit cell. Here, we will not focus
on these properties of the clean BTL in the thermodynamic
limit. Instead, we will investigate the local correlations of
two static holes—vacancies hereafter—introduced into finite
BTLs. The paper is organized as follows. In section 2, a
brief description is given of the two numerical methods used.
Section 3 compares the specific heat obtained with the ED and
QD approaches for the clean system (no vacancies). Section 4
analyzes the change in the density of states caused by the
introduction of vacancies; the binding energy of two vacancies;
and the spin–spin correlations in the presence of vacancies.
Section 5 discusses the results obtained and section 6 presents
the conclusions.

2. Numerical methods

In this paper, results from two complementary methods will
be discussed, namely, complete ED on the one hand, and
restricted diagonalization in the QD subspace on the other
hand. Recently, QDs on a BTL lattice have been considered
for the so-called μ-model of shortest length resonance moves
for the QDs. There, for certain ad hoc resonance amplitudes,
the QD model was shown to be identical to the transverse-field
Ising chain at criticality [30]. In contrast to that study, we will
account for all resonance moves resulting from equation (1).

The generalized eigenvalue problem in the QD Hilbert
space uses the transition graphs depicted in figure 1 and is
set up according to [34] (to which we refer the reader for
details). The ED calculations use a Lanczos algorithm [20]
when only the ground state properties are needed, and a
Householder algorithm when knowledge of the full spectra
is necessary. Periodic boundary conditions (PBC) apply to
all results discussed in the following and the ED calculations
take advantage of all the symmetries available to minimize
the size of the Hilbert space. For all systems studied we
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Figure 2. Ground state energy versus inverse system size for
N = 12–30 (ED) and N = 12–36 (QD).

find the undoped ground state to be non-degenerate, with
translationally invariant nearest-neighbor spin correlations,
which is consistent with a spin liquid state or a valence bond
crystal with a unit cell large compared to the system’s sizes.
Before calculating thermodynamic properties in section 3, the
authors wish to compare the ground state energy per spin for
different cluster sizes calculated using ED (full Hilbert space)
with that calculated using the QD approximation. In figure 2,
we show the ground state energy (per spin) eg versus the
inverse system size 1/N . For QDs, proper N needs to be a
multiple of 6 (note that a very small ‘even/odd’ oscillation with
respect to N/6 can be seen in the QD results). From figure 2,
a deviation of approximately 4–5% between ED and QD can
be extrapolated in the thermodynamic limit. This has to be
contrasted against the relative dimension D of the complete
Hilbert space, D0 of the singlet sector, and DQD of the QD
space, which are D = 2N , D0 = N !/[(N/2)!(1 + N/2)!],
and DQD = 2N/3+1. For N = 30, this implies D/D0/DQD ≈
1.1 × 109/(9.7 × 106)/(2.0 × 103). In view of these ratios,
the results in figure 2 are in reasonable agreement. This
seems to indicate that the BTL (with and without vacancies,
as stressed in the next sections) has a ground state that can be
well described by a wavefunction built exclusively with singlet
dimers (which is the essence of the QD approach). A better test
of the quality of the singlet dimers ground state wavefunction
would be the calculation of its overlap with the ED ground
state. These results will be presented elsewhere [35].

3. Thermodynamic properties

First, we briefly consider the clean system and compare the
specific heat, obtained by ED, with results from the QD
approximation. A fingerprint of SL states in strongly frustrated
magnets is the accumulation of singlet states at low energies.
In the kagomé AFM, the number of singlets below the first
triplet has been observed to grow exponentially with system
size [8]. In the BTL, power-law behavior with an exponent
2 has been suggested [33]. The singlet accumulation at low

2



J. Phys.: Condens. Matter 20 (2008) 415204 G B Martins and W Brenig

ED
QD

C
v

ED
QD

T

N = 24
N = 30
N = 36

N = 12

N = 18

all QD

(a)

(b)

(c)

0

0.05

0.1

0.15

0.2

0.25

0

0.05

0.1

0.15

0

0.05

0.1

Figure 3. Specific heat CV versus temperature T . (a) and (b)
Comparison of ED and QD for N = 12 and 18. (c) QD for
N = 24–36.

energies leads to a characteristic singlet–triplet double-peak
structure in the specific heat CV [7, 33, 36, 37]. For the kagomé
AFM a substantial fraction of the singlet peak in CV is believed
to be due to QD fluctuations [34]. For the BTL, this is an
open issue. Therefore, in figure 3 we consider CV from QD
and ED calculations. The latter agree with identical results
from [33]. In view of large finite size effects our emphasis
is on a comparison at identical system sizes, rather than in the
thermodynamic limit. First, there is a remarkable similarity
between the positions of peaks in ED and QD in figures 3(a)
and (b). Second, for the leftmost peak in figure 3(b), at low
temperatures, the magnitude of CV and the entropy from ED
and QD are comparable. I.e., we conclude that the low-T peak
in CV of the BTL is caused primarily by QD fluctuations. As
can be seen from figure 3(c), the low-T peak stabilizes as N
increases. Third, in the high-energy region T > 0.5 a single
peak can be observed which contains most of the entropy (note
the log T -scale). This entropy is significantly larger in the
ED as compared to the QD. This difference is due to triplet
excitations not present in the QD space. Figure 3(c) shows
that CV from QD has converged to the thermodynamic limit
for T > 0.1 at N > 36—a system size we cannot reach with
ED. Finally, the intermediate-T feature in ED seems strongly
system size dependent, as already noted in [33].
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Figure 4. Number of singlets in ED versus energy at N = 18,
contrasting 0 vacancies (solid line) with 2 vacancies (dashed). Solid
(dashed) vertical line: triplet gap for 0 (2) vacancies. Vacancies are
located at two adjacent sites on one BTL leg. E0 refers to ground
state energy.

4. Static holes

In this section, we consider the change in the singlet density-
of-states (DOS), the binding energy, and the spin correlations
which stem from introducing two vacancies into the BTL.

4.1. Density of states

Figure 4 shows the integrated singlet DOS versus energy,
contrasting the case of zero vacancies against that of two
vacancies placed at adjacent sites on the leg of a BTL with
an even number of sites. The main point of this figure
is the number of singlets below the first triplet. Evidently
this number is reduced by introducing the vacancies. A
similar effect is observed for any other relative separation
of the vacancies and also in the case of a single vacancy.
This low-energy suppression of singlet DOS originates from
the reduction of frustration at the neighboring sites of the
vacancies, which favors binding of singlets in the vicinity of
the vacancies (see also section 4.3). Consequently the low-
energy singlet DOS decreases, while the triplet gap is set
by excitations distant from the vacancies and therefore less
affected. While similar effects have been reported for the
kagomé AFM [13], this behavior is drastically different from
VB states on bipartite lattices, where static holes tend to bind
spin-1/2 moments which leads to an increase of low-energy
triplet DOS [38].

While the QD variational space does not contain triplet
excitations, it is nevertheless instructive to compare the impact
of vacancies on the singlet DOS between the ED and QD
calculations. In figure 5, we show the number of singlets
above the ground state energy in the QD case for a system
size and a vacancy placement identical to that of figure 4.
First, the overall trend for QDs depicted is remarkably similar
to that in ED. Second, the suppression sets in at somewhat
larger energies, of E − E0 ∼ 0.3 for QDs, as compared to
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Figure 5. Number of QD singlets versus energy at N = 18,
contrasting 0 vacancies (solid line) with 2 vacancies (dashed).
Vacancies are located at sites identical to figure 4. E0 refers to
ground state energy.

E − E0 ∼ 0.2 for ED. Finally, it can be seen that in the energy
window depicted the QD singlets make up for approximately
50% of the total number of singlets in ED.

As discussed in section 2, the QD basis comprises a
small fraction of the singlet sector in the total Hilbert space
(used in the ED calculation). It is then expected that the
integrated density of states obtained by ED (figure 4) should be
considerably larger than that obtained by QD (figure 5). The
striking result is that the change in the density of states with
the introduction of vacancies is similar for ED and QD. This
is an indication that the ground state of the BTL is properly
described by an SL-like wavefunction composed of singlet
dimers (which lies at the heart of the QD approach).

4.2. Two-vacancy energy

Now, we turn to the binding energies

�e2h
a(L) = Ea

0 (L) − Ea
0 (L = 1) (2)

of two vacancies separated by L sites along the center(leg) = a
of the BTL, where Ea

0 refers to the corresponding ground
state energies. In figures 6 and 7 we present two aspects of
�e2h

a(L). In the former, we compare the binding energies
obtained from ED with those from QDs for various systems
sizes. First, and remarkably, the ED and QD results are
very similar, both for a = center and leg. Second, these
figures demonstrate that the vacancies experience a short
range repulsive force, with a maximum binding energy at
approximately 3 lattice sites. This is in sharp contrast to
quantum AFMs with VB ground states on bipartite lattices.
There, two vacancies experience a maximum binding energy
if placed on those nearest-neighbor sites which are occupied
by singlet dimers in the undoped case. Moreover, separating
the vacancies will generate a string of ‘misplaced’ dimers of
length proportional to the vacancy separation. This generates
a confining potential. Such confinement cannot be inferred
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Figure 6. Comparing two-vacancy energies at vacancy separation L
from ED (solid line with open squares) with QDs (solid line with
solid squares) for different systems sizes N = 18, 24, and 30. (a)–(c)
((d)–(f)) refer to two vacancies in (on) the center (leg) of the BTL.

Δe
2h

ce
nt

er
(L

)

18
24
30
36
42

L

Δe
2h

le
g (L

)

ED QD(a) (c)

(b) (d)

N

-0.4

-0.3

-0.2

-0.1

0

-0.4

-0.3

-0.2

-0.1

0

Figure 7. Evolution of two-vacancy energies at vacancy separation L
with system size for ED with N = 18–30 in (a), (b) and for QDs
with N = 18–42 in (c), (d), with symbols as indicated in panel (a).

from figure 6. Rather, from the largest system which allows
for a direct comparison between ED and QDs, i.e. N = 30, an
oscillatory behavior at large distances can be anticipated. This
can be corroborated by extending the QD calculation to larger
system sizes as shown in figure 7. There, clear oscillations
in �e2h

a(L) can be observed in the right panel, both on the
legs and in the center. In section 4.3, an intuitive picture of
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Figure 8. Nearest-neighbor spin–spin correlations slm from ED and QDs, for two vacancies (full circles) on the center and leg of a BTL with
N = 30 for (a) and (b). The width of solid lines (with vertical slash) is a linear measure of −slm (slm ) for slm < 0 (>0). (1) · · · (5) labels all
non-equivalent two-vacancy positions. For each (1) · · · (5) the adjacent lower (upper) graph corresponds to one ED (QD) result, both for (a)
and (b). Numbers refer to maximum values of −slm observed for ED and QDs in (a) and (b).

the two-vacancy energies in terms of the dimer coverings will
arise. From the preceding, it is tempting to speculate that
mobile vacancies on the BTL are bound only weakly and will
deconfined already for kinetic energies small compared to J .

Finally, figure 7 points towards some of the limitations of
the QD approach. While the qualitative behavior is identical
for ED and QDs, i.e. panels (a) versus (c) and (b) versus (d),
panel (d) shows a significant variation of the absolute value of
the QD binding energies, depending on whether N/6 is even
or odd. The latter even/odd effect is absent in the ED results.

4.3. Spin–spin correlations

The nearest-neighbor spin–spin correlations slm = 〈Sl · Sm〉
are a direct measure of the singlet amplitude on the bond lm.
Here, we consider the impact of two vacancies on slm at zero
temperature. Figure 8 summarizes our results, both for ED and
QDs on the largest system for which we have performed ED,
i.e. N = 30. In this figure slm is visualized in terms of ‘bond-

thickness’. First, we note that slm fulfils the sum rule

E0(L) =
∑

lm

slm (3)

where E0(L) refers to the ground state energy with two
vacancies in a relative configuration denoted by L. Using the
results from figures 6, 7 and 2, the sum rule has been checked
to hold for all cases we have studied, both for ED and QDs
and also for the undoped case, which will not be discussed
here. From figure 8, it is evident that the vacancies introduce
a strong polarization into the magnetic background, which
leads to spatial oscillations of the spin–spin correlations, with
a pattern depending on the separation of the vacancies. This
has to be contrasted against the undoped case, in which slm

is almost homogeneous along the BTL with only a very small
transverse difference between the central rungs and the legs.
Specifically, the figure demonstrates that slm tends to be largest
in the vicinity of the vacancies. This corroborates the picture
of a doping induced reduction of singlet fluctuations, due to
singlet-binding to the vacancies as discussed in section 3. In
fact, the maximal values of |slm | in the vicinity of the vacancies
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as shown in the figure are close to 3/4, implying a singlet
amplitude of 1 on those bonds. Note that for a small number
of bonds, ferromagnetic correlations of a rather small absolute
magnitude arise, both in ED and for QDs.

The tendency of the system to accommodate singlets next
to the vacancies provides for a direct interpretation of the
vacancy-repulsion, namely the number of ‘strong’ singlets
which can be bound to the vicinity of the vacancies is less if
their separation is small. This can be read off directly from
figure 8 in going from panel (1) to (5).

For the majority of vacancy placements depicted in
figures 8(a) and (b), namely (a) (1)–(3), and (5) as well
as (b) (1)–(3), the qualitative real-space structure of slm is
remarkably similar for ED and QDs. For group (a) (4) there
are some differences observable right of the second vacancy.
In groups (b) (4) and (5) there are clear qualitative differences
between ED and QDs, especially on the leg free of vacancies.
This suggests that QDs provide for a better description of
vacancies in the ‘bulk’ of the BTL than on its boundaries.

For a quantitative comparison between ED and QDs, we
turn to figure 9, where we show several cuts along the BTL
through the legs and rungs displaying the values of −slm versus
a measure of distance given by a ‘1D center-of-mass’ CM of
each bond. CM runs in steps of 2 (1/2) from 0 (−1/2) to
2N/3−2 (2N/3−3/2) on the legs (rungs). The top four panels
in figure 9 are representative of those cases in figure 8 which
suggest qualitative agreement between ED and QD. It is readily
apparent that there is also excellent quantitative agreement.
The lower two panels in figure 9 refer to −slm on the upper
leg (rung) for the worst case of figure 8(b) (5), where ED and
QD show strong qualitative differences.

5. Analysis of results

In the following, we provide additional discussion of the results
shown in figures 6–9. When both vacancies are positioned in
the center axis (see figure 8(a)), reflection symmetry around
this axis is retained. This allows for the formation of highly
symmetric and simple spin structures. First, as noted above,
isolated singlets form at the bonds situated closest to the
vacancies for all vacancy separations. Second, more subtle
geometrical constraints decide if other spin structures (e.g.,
loops with even numbers of spins or short chains) will form,
where they will be located, and how much singlet correlations
there will be between them. For example, in figure 8(a) (3),
at a vacancy distance of L = 3, apart from the four isolated
dimers, one can clearly notice the presence of 4- and 8-spin
loops in the shape of three diamonds and a four-pointed star,
respectively. These structures are only weakly connected by
singlet correlations3. Obviously, the distance between the
vacancies is one of the controlling parameters in this respect.
For example, at distance L = 5, open 3-spin chains are
present in the shape of boomerangs, besides diamonds and

3 The analysis of figures similar to figure 8 for smaller clusters (not shown)
presents the same picture, i.e., at distance L = 3 (vacancies in center axis)
these simple structures are very well defined and quite weakly connected to
each other, resulting in a strong binding energy for vacancies at this particular
distance.
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Figure 9. Negative nearest-neighbor spin–spin correlations −slm

along the upper (lower) leg (rung) for u(l) l(r) from ED (QDs) for
open (closed) circles with two vacancies and N = 30, corresponding
to figure 8 and panels (a) (3), (b) (1), and (b) (5). CM labels ‘center
of mass’ of bonds. Crosses mark bonds linked to vacancies where
slm has been set to 0.

dimers. However, in this case, these structures are not as
independent from each other, i.e., the singlet links between
them are stronger, as compared to L = 3. Therefore, some
vacancy distances are more favorable than others in allowing
for the formation of such independent ‘frustration releasing’
structures. This leads to the oscillating behavior of the binding
energy in figure 7(c)4. Finally, since weakly connected dimers,
boomerangs, and diamonds can be described rather well by the
QD basis, the very good quantitative agreement between ED
and QD for vacancies located in the center axis is no surprise.

When the vacancies are both on the same leg, reflection
symmetry around the central axis is lost. Therefore, apart
from the dimers close to the vacancies, simple structures as
described above are less favorable and form only for some
vacancy distances, as for example the diamonds seen at L =
2 in figure 8(b). Instead, and in contrast to the centered
vacancies, more complex correlations of the spins occur, which
involve the presence of ‘spin chains’ of considerable length.
These cannot form when the vacancies are in the center
axis because of symmetry considerations and avoidance of

4 It is interesting to note that a criterion that appears to be followed in the
formation of these structures is the avoidance of isolated ‘free’ spins.
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uncorrelated free spins. These chain structures with longer
range spin–spin correlations are not well described by the
QD basis. Their presence leads to quantitative discrepancies
with the ED results. The difference in agreement between
figures 7(a) and (c) versus figures 7(b) and (d), as well as the
discrepancies in the two lower panels in figure 9 corroborate
this interpretation5.

Finally, we would like to repeat that the finite systems
we have investigated show a non-degenerate ground state with
a triplet gap and many singlet excitations of lower energy.
This is suggestive of a spin liquid state and allows for a
direct interpretation of the ground state energy oscillations
in terms of the RVB picture. For bow-tie ladders in the
thermodynamic limit, the generalized Lieb–Schultz–Mattis
theorem [39] indicates either a degenerate ground state with a
gap to low-energy excitations or a non-degenerate ground state
with gapless excitations—favored by DMRG calculations [33].
While we are definitely not able to discriminate between these
two cases, it seems very interesting for future studies to clarify
if also in the latter case ground state energy oscillations could
occur as a function of vacancy separation.

6. Conclusions

In summary, we have performed a complementary numerical
analysis of a geometrically frustrated quantum spin ladder
with and without static holes using exact diagonalization
and a truncated basis of quantum dimers. For the undoped
system, we have shown that dimers allow for a reasonable
approximation of the ground state energy and the low
temperature specific heat. In the doped case, we have shown
that the system can release frustration through binding of
singlets and other extended unfrustrated spin structures to the
static holes. Results for the vacancy binding energies and
the nearest-neighbor spin correlations confirm this picture.
Analysis of dynamic correlation functions, as e.g. magnetic
Raman scattering, and the finite size scaling of overlaps
between ED and QD states, will be presented elsewhere [35].
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needed for a more detailed analysis of the properties of these structures.
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